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In Akhiezer’s book [“The Classical Moment Problem and Some Related Ques-
tions in Analysis,” Oliver & Boyd, Edinburgh/London, 1965] the uniqueness of the
solution of the Hamburger moment problem, if a solution exists, is related to a
theory of nested disks in the complex plane. The purpose of the present paper is to
develop a similar nested disk theory for a moment problem that arises in the study
of certain orthogonal rational functions. Let {a,},” , be a sequence in the open unit
disk in the complex plane, let

a0 —Z

B,=1 and B.z)=1]]
k=0

—, n=1,2, ..,
o | 1T =,z

(o/|os | = —1 when o, =0), and let

& =span{B,:n=0,1,2,..}.

344
0021-9045/97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.



NESTED DISKS 345

We consider the following “moment” problem:

Given a positive-definite Hermitian inner product <{-,-)» on ¥ x %,
find a non-decreasing function x# on [ —z, 7] (or a positive Borel
measure x4 on [ —x, i)) such that

fg= j f(e”) g€ du(0)  for f ge?.

In particular we give necessary and sufficient conditions for the uniqueness of the
solution in the case that

8

Z (1 —a,|) < co.

If this series diverges the solution is always unique.  © 1997 Academic Press

1. INTRODUCTION

In [2] the uniqueness of the solution of the Hamburger moment
problem, if a solution exists, is related to a theory of nested disks in the
complex plane. The purpose of the present paper is to develop a similar
nested disk theory for a moment problem that arises in the study of certain
orthogonal rational functions.

Let

T={zeC:|z|=1}, D={zeC:|z|<l}, E={zeC:|z|>1}

And let «,, n=0,1,2,.. be given points in D with a,=0. The Blaschke
factors ,, are given by

((z) =2
o

where by convention

=1 when o, =0.
The (finite) Blaschke products are

=[] &ul2), n=1,2, .., and By(z) = 1.

k=1
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We define the linear spaces %, n=0, 1,2, ... and £ by

%, =span{B,,:m=0, 1, .., n} and =) 4.

where
. (z)=]] (1—-a,z2), n=1,2,.., and myz)=1

and p,, belongs to [],,, the set of polynomials of degree at most n. The sub-
star conjugate f,, of a function f is defined as

Si(2)=f(1/2).
For fe £\%,_, the superstar conjugate /* will be
S*(2)=B,(2) f(2).

If fe %, then f*=f,.

The linear spaces ..,

Lw={Su: €L} and L, ={f,: feZ}.

Then we have

n=0,1,2, .. and &, are defined as

1 1
£, =span {B: m=0,1, .., n} = span {: m=0,1, .., n},

m m

where

w,(z)= ﬁ (z—og), and wy(z)=1.
k=1
As in [3] we also put
L(a,)=1{feZ: f(a,) =0}, n=12,..

and similarly

L, ={fe %L, f(1/x,) =0}, n=12,...
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Furthermore we assume that M is a linear functional on ¥ + %, such
that for f'e ¥ we have

M(f)=M(). and  M(ff,)>0 if f#0.

Then this also holds for fe ¥ + %,. The functional M induces an inner
product {-,-> on ¥ x % by

{f.g)=M(fg,), [ geZ.

Note that X%, =< + ., as can be seen by partial fraction decomposi-
tion. Also for f, ge &, we may define { f, g) = M(fg,). Then we get

<fsg>=<g*af*> for f,g€$

As (g fy=Mgf)=M(fg,)=<{fig) for fge? and (ff>=
M(ff,)>0 for fe %, f#0, the inner product is Hermitian and positive-
definite on ¥ x Z.

In this paper we develop a nested disk theory in connection to the
following “moment” problem:

Given the inner product {-,-» on ¥ x.% (or the linear func-
tional M on ¥ +.¥,), find a non-decreasing function x on
[ —m, =] (or a positive Borel measure u on [ —x, 7)) such that

=] e g M duo) for fges
(or M(f)= j F(e™) du(0) for fe%+2,).

In particular we give necessary and sufficient conditions for the uniqueness
of the solution in the case that

> (1—]a,|) < co.
n=1

If this series diverges the solution is always unique. This is a consequence
of the “closure criterion” discussed in Addendum A.2 of [1]. Two non-
decreasing functions which are solutions of the moment problem such that
their difference is a constant at all the points at which it is continuous are
considered to be the same solution of the moment problem.
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2. ORTHOGONAL RATIONAL FUNCTIONS

In our approach orthogonal rational functions will play an important

[°s}

role. Let the sequence {¢,} ", in & be obtained by orthonormalization of
the sequence {B,} 7, with respect to the inner product (-,-» on ¥ x %,
1e.,

¢n€$1 and <¢’19¢’1>:1) n:07 1)29 oo
and
{fid,y=0 for fe%, _,, n=12,..

Such orthogonal rational systems were also considered by Djrbashian [9].
It follows easily that

{Lgi>=0 for feZa,), n=12 .,
because B, f, € %, _, for such f. Each ¢, can be written as
z)=Y b B(z).
k=0

Here the non-zero number 5" is called the leading coefficient of ¢,. We
assume that the ¢, are chosen such that b >0 and we write x,=b{". It
is easily shown that

K, =@ (a,) =@ (a,).

Using the uniqueness of the reproducing kernel

for the inner product space %, one can show, see for instance [3] or [9],
that the following Christoffel-Darboux formula holds

fi' 52(2) T 1) FTOT — 4,(2) ,00)
k k

and equivalently

i o) gy = L) 4a .2
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The ¢, and ¢;F satisfy the recurrence relations

Z— 0, Ky n— X, Z Ky
¢;1(Z):8n7] ¢n 1(2)+5 717¢:<71(Z):
l—o,z x,_, l—o,z x,_,;

n=1,2, .. .
1,2 (2.3)
and (superstar conjugation)
* - ain ~ Z—%, 1 K,
¢n(z) |<Xn| n l_a—nz K,1,1¢n71(2)
Ocin 71—0(,17 Z K,
BT e, a=l2 24
an| — X,z K,
with ¢, =@F =r,. Here
ain 1 oy 10( ¢ ( nfl)
g, = — , 2.5
w112, (17 x, (23)

S = 1 _O(nfl(xin qbn(anfl)
n— 2 .
1_|O(}171| K

(2.6)

n

It follows from the Christoffel-Darboux formula (2.1) with z=w=0a,
that ¢,#0. A proof of (2.3) and (2.4) can be found in [3] or in [4], but
(2.3) and (2.4) also may be derived from the superstar conjugates with
respect to w and with repect to z and w of the Christoffel-Darboux formula.
See also [9]. We mention another consequence of the Christoffel-Darboux
formula. Taking the superstar conjugate of (2.1) with respect to z and w and
writing

B\« =B,/B;, k=0,1,..,n;, n=0,1,..

we obtain
n—1

PRI LAEL0A ' 6, ) B a0 6(2) B
—u(2) Cu(w) k=0 (2.7)

For z=w=a,_, this gives

|¢;1k((x'n7])|2_ |¢n(an7])| |¢n71( n71)|2 [1 - |Cn((x'nfl)|2]

o (=, P = e,y )
=K, — 2 .
|1 _anan—l|
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Together with (2.5) and (2.6) this leads to

Kifl 1—|O{n|2

o 1=la, o [*

n

len | = 10,17 =

In particular this implies that
le,|>19,]. (29)

A different proof of (2.8) can be found in [6].

3. ASSOCIATED FUNCTIONS

Next to the orthogonal functions ¢, we consider the associated functions
Y, defined by

1
Yolz)=——. (Yolz) = —M(do)),
and
Yu(2)=M(D(t, 2)[9,(2) —¢,(0)]),  n=12, ..
Here M is acting on ¢ and

t+z

D(t,z)= —

Obviously y,e &, for n=0, 1,2, .... It is shown in [8] that

Uo(z)= M (D(z, 2) [cbn(z) —J{g)) M”D
for fe %, 1e [#0, n=12, .. 3.1)

For the superstar conjugates of the s, we have

and
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It is shown in [ 8] that we also have

w,:k<z>=M<D<z, ) [;((Zcb;k(r)— ;“(Z)D
for fe, (%), f£0, n=1,2,.. (3.3)

The functions y,, and y* satisfy the recurrences

z—o,_, K, l—o,_z x,
l//n(z)zgni—l lpnfl(z)_éni—li :‘71(2)’
l—o,z k,,_; l—0o,z K,

n=1,2,.. (3.4)
and (superstar conjugation)
iz = s, Tt By ()
| n| I_O(nz Kn_1
a, _1—wo,_z kK,
- gnlig— ¥ (z), n=12.. (35)
(X"| _a'nZ anl

A proof of these recurrence formulas can be found in [3]. Another proof
is given in [8]. The pair (y,, —yF) satisfies the same recurrence as the
pair (¢,, ¢¥). The initial values are (@, ¢&) =ro(1, 1) and (Yo, — Y &)=
(—=1/ro)(1, —=1).

4. ANALOGUES OF THE LIOUVILLE-OSTROGRADSKII FORMULA
(DETERMINANT FORMULA) AND GREEN’S FORMULA

In the previous section we have seen that the pairs (¢,(z), ¢¥(z)) and
(Y,(2), =y X(z)) satistfy the recurrence

" X,(2) =, A,(2) X, (2)+0,B,(2) X] 1 (2), n=12..
! (4.1a)
Bl X (2) =0, [8,4,2) X, () +5B,(2) X ()], n=12,.,
K
! (4.1b)
where
_ - R
n— T a” s An(z):Z%“iila Bn(z):#, n:l’ 2,
loc,, | l—a,z -,z
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Suppose that the pair (x,(z), x](z)) satisfies (4.1) and suppose that the
pair (y,(w), yi(w)) satisfies (4.1) with z replaced by w. Put

Gn(zs W) :XZ(Z) yn(w) —X”(Z) y;(W), n= Oa la 2a
Then
2

;;;1 Gn(Zr W) = I-nl:éin‘An(z) xnfl(z) +87an(2) xl—l(z)]

n

K

LenAu(w) yu (W) +3,B,(w) y)_(w)]
—[e,Au(z) X, 1(2) +9,B,(2) x]_1(2)]
“T,[0,A4,(w) ynfl(W) +2,B,(w) yi_1(w)]
=1,[10,17 = 12,11 4,(2) B,(w) x, _1(z) ¥}, (W)
+7,[le, 12— 10,171 4,(w) B,(2) X, _1(2) ¥, (W)
=1,[le, 1> — 16,17 1{A,(w) B,(z) x] _(2) ¥, _1(W)
—A,(2) B,(w) x, 1(2) y}_1(w)}
=1,[le,1*— 10,171 4,(w) B,(z)

-%zxnynmm—xnmwﬂmm

+@—A*”&”ﬂmnwnyzmm.

A,(w) B,(2)
Here
LA B (A=l PE=w) L ()
An(w) BH(Z) (o{nfl_wy)(l_mz) Cnfl(w).
With
St s = 10,121 A, (w) B(z), n=1,2,.. and co=1
we get

LT el =10 n< >W—% [ =%

Ch i IL—ow 5 w—ay

n
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Using (2.8) this gives

5 _
Kk, l—o,z w—ua, 1

CTE T, w B (+2)
Moreover
. {1_An(z) B,,(w)}:_fci_l Z—w
U 4,0 B(2) g WB, ()
Hence
6,2 0)— 5 Gy (2w = () 0]
and summation gives (¢,=1)
Z%ann(z’ W) — Go(z, W) = _zwwéz1 xk_gi)f({;)l(lv)’
and by (4.2)
o _ yi
11— |Z:Tz t —:i/n B,iw) Gulz, W) oz 3}w Golz, W) 20 Bk(wim
o)
x3(2) yuw) —x,(2) yi(w) B () x4(2) yo(w) —x(2) yi(w)
—(C2)/C.(w)) 1 —(Lo(2)/Co(w))
= _/Zo Xi(2) B (w) yi(w).

For z=w we get the determinant formula

1— |(X”|2ZB},,(Z)
l—u,z z—a,

x0(2) yul(2) = x,(2) yi(2) = (x5(2) yo(z) —x(2) ¥{(2)).

In particular for

xn(z):¢}1(2)7 XZ(Z):(b:Ik(Z), yn(z):l//n(z)’ yj;(z): _lnbn*(z)
we obtain the analogue of the Liouville-Ostrogradskii formula

1— |(xn|2 _22Bn(z)
l—a,z z—a,

¢ (2) ¥, (2) + ¢.(2) i (z) =
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as a special case of the determinant formula. Of course formula (4.3) may
be derived more easily. The formula is also proved in [6].
The analogue of Green’s formula is derived in a similar way. Put

Fn(Za W) =X1;(Z) yl(W) —Xn(Z) yn(w)s n =09 1s 23

This time we obtain from (4.1)

2
Ko -
= SF(zw)=[le,|* = 10,171 B,(2) B,(W)

n

[Fnl(z, w)+{1 A, (2) 4,(w)
Bn(z) Bn(W)

}xnl(z)ynl(w) ,

where now

4,(2) A,(w) (1 =Jo, 1 |*)(1 —2w) —
1— = =1- 1 n—1\W).
B,(z)B,(w) (I—x,z)(1—a,_,w) en1(2) &n—ilW)

If ¢,=1 and
C';*'=[|en|2—|5,,|2]B,,(z>B,,(w>, n=12,..,
then
K2(1—a,z)(1—o,9) &2 1—zw
C,=— =3
k2 I—la,|? Ko 1—Co(2) Tw)
and

Thus we obtain

c, C, _
an(Z, W)_ 2 ! anl(zﬂ M}) =72 (1 _ZW) xnfl(z) ynfl(w)
Kn Kn—l KO
which leads to
Cp Co 1 ot
72Fn(za W) _72F0(Za M}) =73 (1 _ZW) Z Xk(Z)yk(W),
Ky Ko Ko k=0
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and using the expression for c,,,

1 —zw

1— z.:/;1(2) é:”(W)

F(z,w)—Fy(z,w)=(1 —zw) Z ),

SO

=) 50m) =2

xM2) yiw) = x,(2) yu(w)  x{(2) pi(w) —x4(2) Yo(w) "il
= X,z 5
. (4.4)

the analogue of Green’s formula. Notice that 1 —{(z) {o(w)=1—2zw.
We only mention the following special cases of Green’s formula. For

X(2)=¢,(2), XN =452) W) =yw),  phw)=—yX(w)

we get

F) Y w) +¢,(2) . (w) 2 _
- «(2) Y 4.5
1-{,(2) L, (w) R Z u(2) Uw).  (45)

x2)=y,(2),  xXN2)=—YFz) yw) =y w), yi(w)= =y E(w)

we get a “Christoffel-Darboux” formula for the associated functions

lpn( )‘/jn( )_lpn(z) lpn(m;) =

EFET R AT (“46)
and if z=w
|¢;=(12!2|§ B = nil W20l (47)
The superstar conjugate of (4.7) reads
v (12!2%,,('2{#)722)'2 =:Z; B2 W) (4.8)

5. PARA-ORTHOGONAL FUNCTIONS AND
QUADRATURE FORMULAS

It follows easily from the Christoffel-Darboux formula (2.1) that the
zeros of ¢, are in D and that the zeros of ¢} are in E. Moreover we have
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|9,.(2)| <|¢p¥(z)| for ze D and |¢,(z)| > |¢p¥(z)| for ze E. As we intend to
give quadrature formulas with nodes in 7' we consider the functions

0, (z,w)=0¢,(z) + wdX(z), n=0,1,2, .. (5.1)

with w e T arbitrary. Clearly the zeros z,, ..., z,, of Q,(z, w) are all in T and
it is easy to show that they are simple. See [3]. Of course the zeros z;
depend on n and w. Since

Qn(zz M})J-’?izfl N "Zt(an)a n= la 2a
and
Oz, w), 1>#0 and  (Q,(zw),B,(2))#0, n=12,.,

where the inner product acts on z, the sequence is called para-orthogonal.
As

05 (z, w) =wQ,(z, w),

superstar conjugation with respect to z, the Q, are called w-invariant.
Notice that the above orthogonality remains valid if for each n we take for
w a fixed w, in T. If

_ 1 7@2 Qn(za M))
B 1 _fnzi (Z _Zi) Q:”I(Z[D W),

A, (2) i=1,..n, (5.2)

where the prime means differentiation with respect to z, then 4, ;€ %,
and we have the quadrature formula (see [3])

M(R)= ) 1, ,R(z)) for Red, 1)+ 1, (5.3)

with 4, ;=M(4, ;) >0 for j=1, .. n
Let us assume now that z;=e", j=1,2, .., n, with
—n<0,<0,< - <0, <7
Then, using the functions yu, given by
0 if —n<0<0,,
w,(0)= i Ay A0, <0<0, 4, k=1,..,n—1,

J=1

M(1) if 0,<0<n
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(or using the measures u, =3_, 4, ;0,,, where d,_is the translated Dirac
measure), one obtains from Helly’s theorems (or from the weak* compact-
ness of the 1-ball in the dual space of the Banach space C(7)) that the
moment problem has a solution, say . So there is a non-decreasing func-
tion (or a positive Borel measure) u such that

M(R)= [ R(")du(0) for ReZ,+2. (54)
It follows from the fact that the inner product is positive definite that the
solutions 4 must have infinitely many points of increase (or must be
measures with infinite support). The proof is given in Section 7.
Now let

otttz o
F()=] “=duo)  (=e") (5.5)
and
T t+z - +z
R = .
Az =] = ¥ hn
Then R,(z, w) can be written as
P
R, (z,w) :M with P, (z,w)e Z,.
0,(z, w)
It is shown in [8] that
P,(z,w)=1,(z) —wy ¥ (z2), n=1,2,... (5.6)

In [5] a formula like (5.6) was obtained only in the “cyclic” situation,
i.e., in the case of a finite number of points «, repeated in cyclic order.
From the partial fraction decomposition

- z;+z
R(z,w)=) 4, ;-
j; 2=z
it follows that
1 P,z
= = B2 W) (5.7)

22, O (2, W)’
Using the determinant formula it can be shown that (see [8])
1

in’j:m, ]: 1,..., n, neN. (58)
\Z
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It is also shown in [8] that R,(z, w) is a “Padé-type” approximant to F,
in the following sense. There are functions A, and /., both analytic in
DU E with lim, _ , h,(z) =0 and lim h.(z) =0 such that

F(z2)—R,(z,w)=B,_(2) hy(2)
and

1

F (z)—R,(z,w)= B2
n—1

7

h(z).

Of course the functions /4, and /&, depend on the parameter w. The error
is given by

F, (Z) - R”(Z, M}) =

i

1 n
o P [0 0t w) dul0),

where fe %, ), 0%, (1/x,), f#0. See also [7].

6. NESTED DISKS

Let
Dy={zeD:z#a;,,j=0,1,2,..}
and Ey={zeEz#1/x,j=1,2,..}.

For fixed ze D, U E, the values of

Vu(2) —wii(z)
¢,(2) +whi(z)

describe a circle, say K,(z), if w varies in 7. Indeed, by the Christoffel-
Darboux formula (2.1) and formula (4.7) we have

1,(2) ] — 2] ()] + W)
@ 60l SIS g <

As we T, the equation of K,(z) is
Wi (2) +s¢5(2)] = W,(2) —s9,,(2)]. (6.1)

Since the pairs (¢,(z), ¢¥(z)) and (y,(z), —yF(z)) are (independent)
solutions of the recurrency (4.1) also the pair (Y,(z)—s¢,(z2),

s=R,(z,w)=
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— Y ¥(z) —s¢¥(z)) is a solution of (4.1). Hence by the analogue of Green’s
formula (4.4) we have for the given z

[V 5(2) + 505212 — W(2) —s¢u(2)|* [(1/cg) —src9|* — |(1 /o) + 5760 |*
1=14,(2)]? I—|z|?

=Y e — st

Since the first term on the left-hand side of this equation is zero, the equa-
tion of the circle K,(z) is

o 2(s+35)
Y Wi(z) = spu(2)]P =———3. (6.2)
k=0 1 - |Z|

Clearly the circular disk 4,(z) corresponding to K,(z) is given by
o' 2(s +5)
Y Wa(z) —spu(2)]* < . (6.3)
k=0 1—|z|

It follows directly from (6.2) that
c{seC: Rs>0} if zeD,
and
K, (z)c{seC: Rs <0} if zek,.
Indeed, if sed,(z) and Rs=0, then Yo(z) —sdy(z)=0, so s= —1/x2.

A contradiction. The centre and the radius of K, (z) follow easily from (6.1).
We have

Yr(z) +,(2) 4,(2)
centre = — 7 (z)| |¢n(z)|2 ’
radius = lp:lk(z) ¢)1(Z) + ¢:,k(2) lpn(z)

p*(2)>—,(2)> |

Using (4.5) and (2.1) with z=w we get

2/(1—121?) + X3 Zo ¥ul2) dul2)
o ldk(2)]? '

centre =
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Using (4.3) and (2.1) with z=w we get
(1— o, ?)/(1 —,z) - (—2zB,(2))/(z—a,,)
(1 =127 - ZiZ0 ldu(2)?
2 |z| IB, ()|
= . . 6.4
[EEEDVENTEE (64

Formula (6.3) implies that the 4,(z) are nested disks,

radius =

A4,(z)24,,(2), n=1,2,...

Moreover, by (6.2), the circles K,(z) and K, (z) touch if z is not a zero
of ¢, or if both ¢,(z) and y,(z) are zero.

The intersection of the disks 4,(z) is denoted as 4 (z). Clearly 4_(z) is
a circular disk (with a positive radius) or 4_(z) is a point. The limiting
circle, which may reduce to a point, is denoted as K (z). The inequality for
A (z) 1s

Z W i(z) —sdu(2)]* < (6.5)

As we have nested disks, (6.4) implies that the sequence

< IB,(2)] >”
ZZ=0|¢k(2)|2 n=0

is non-increasing (obvious for |z| < 1), and 4_(z) is a point if and only if
this sequence tends to zero for n — oo.

In the remaining part of this paper we assume that

(l—locAI) 0. (6.6)

||M8

k

Then the Blaschke product

oy oy —2Z

B(z)= i

il gl 1=z

converges uniformly in every compact subset of C\{1/a;:j=1,2,..}. The
zeros of B are precisely o, «,, a5, ... Notice that (6.6) implies that D, and
E, are open sets in C. Also we remark that for ze Dy U E, now 4 _(z) is
a point if and only if

H[\/]S

|¢k( )|? = o0
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ProOPOSITION 6.1. Let ze D, U E, be given. Then

(a) The recurrency (4.1) has at least one solution (X,, X1) for which

| X, |%< o0, ie, (X)i_,€l*
0

I M8

k

(b)  For every solution (X, X|) of (4.1) the sequence (X)), belongs
to I? if and only if A, (z) is a circular disk with a positive radius.

Proof. (a) Take X,=v,(z)—sd,(z) and X = —y*(z) —s¢}(z) with
sed_(2).

(b) 1If A4.(z) is not a single point, then 3, |¢.(z)|? < oo since the
radius of 4 (z) is positive, and for seAL(z) also Y7o [Wi(z) — sdi(2)]?
< co. This implies that also 3 ;°_, [(z)|* < 0o. The ﬁrst statement of (b)
now follows from the fact that (¢,(z), ¢.¥(z)) and (Y,(z), —¥¥(z)) form a
basis for the space of solutions of (4.1). Conversely, if (X, ( ), is in [? for
every solution (X, XT) of (4.1), then >, |¢«(z)|>< oo, and therefore
A (z) is a disk with a positive radius. ||

In the sequel following we say that 4 _(z) is a “disk” if 4_(z) is not a
single point. Thus by a disk we mean a disk with a positive radius.
Similarly we say that K_(z) is a “circle” if K (z) does not reduce to a
single point.

THEOREM 6.2 (Invariance). Let Y [ | (1 —|a,|) < oo andlet zye Dy L E,
be such that A (z,) is a disk. Then 4 _.(z) is a disk for every ze€ Dy, U E, and

Y 6P and Y (2]
k=0 k=0

converge uniformly on every compact subset of Dy E,,.

For the proof of this theorem we need some consequences of the
analogues of Green’s formula and of the determinant formula.

From the Christoffel-Darboux formula (2.1) and its superstar conjugate
(2.7) both with z=w, it follows that

Y o2 = 3 1B\k(2)]* [4F(2)]
k=0

k=0

for each n. Similarly (4.7) and (4.8) imply that

T W) i B2 V()
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for each n. As for ze D, U E, we have

0<|B(z)| <|B,(2)| <|Bai(z)| <1, k=0,1,..n if zeD,

and

1<|Bi(2) <IB(2)| < |B(z)| <0, k=0,1,..,n if zek,,

we obtain
Z lpu(z)]? <0 = Z lpi(z
k=0 =
and
Y W(e)P<we Y [YE)IP<o
k=0 k=0
if ze Dy U E,.

Next we consider (2.1) in the form

$x(2) $X(z0) = 0u(2) do(z0) =[1=0(2) {(20)] X dil2) ul20),

formula (4.6) in the form

Y2 U(z0) = ¥u(2) Yi(z0) = [1 = L(2) Lu(z0)] X Wal2) Yl z),

and formula (4.5) in the forms
=3 (2) ¥ (z0) = d,(2) ¥(20)
2 n—1
=L@ TEN ot T DT

and

~U- L LE +§x//k Enjs

1—zz, —

Elimination of ¢*(z) from (6.9) and (6.11) gives
—[9u(z0) ¥ (z0) +¥,(20) 9.5(20)] d,(2)

~ U= 40 L P

LY [Fez0) Uz + Talze) $F )] ¢k(z)},

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)
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while elimination of *(z) from (6.10) and (6.12) leads to

—[0.(20) ¥ (20) +¥,(20) d.5(20) 1 ¥,(2)

2
—[1=0,(2) TG {

1—zz,

W (zo)

LY (B Vo) + U $E G wz)}. (6.14)

Using the analogue of the Liouville-Ostrogradskii formula (4.3) and

(1 —Jot, |*)(1 — zZ)

=0 L= 1y i )

we get

-LOGE) % 1o
FuZ0) Vi(z0) + P20 $(z0)  275B(z0) | T’

Thus (6.13) and (6.14) become

®, —Z, 1

_¢n(z)— OB (ZO) 1 —O(iz ¢n (ZO)
-
1 = Z [92(z0) UF(z0) + Va(20) 572001 12,
ZoB,(z0) XpZ g — (6.15)
(=T R

Z—Zo l—zzy"C

+ Z [ha(z0) Y3 (20) +Wi(20) @55 (z0) ] Whil2).
=z 1—o,z
2ZO Bn( ) n< k=0 (616)
Proof of Theorem 6.2. In this proof we write
%,-% 1 %—% 1-7%
A,(z)=— — and B,(z)=— —
%Bt1(20) 1 — %z 2ZiOI]EBn(ZO) 1 %z

A n=Pil20) Y. (20) + ¥ i(20) ¢5(20)
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for k=0,1,..,n—1and n=0, 1, ... Then

wo n—1

S Y P2 3T (o)l RGO+ (o) [62(0))

n=0 k=0 n=0 k=0

<Z W (zo)|” - i [di(z0) ?

k=0

N

+

n

HMS

NES |wk(zo)|2><oo

0 k=0

by (6.7) and (6.8) as X7, |di(z0)|? <00 and X, [Wi(zo)|* < o since
A_.(zy) 1s a disk. Let C be a compact subset of D, U E,. Then 4,(z) and
B,(z) are uniformly bounded for ze C. Say |4,(z)| <R, and |B,(z)| <R,
for ze Cand n=0, 1,2, .... Then (6.15) and (6.16) are of the form

n—1

Ancn—i_Bn Z ak,nnka n:O, 13 2s eeey

k=0
(Wlth M= ’7n(Z)» An = A”(Z), Bn = Bn(z))9 where

w n—1

o0
Y e <o and YooY lag P <o

n=0 n=0 k=0

As in Akhiezer’s book [2] we show that "o |1.]1? converges uniformly
in C. Let ze C. Then clearly

2}1/2
Let 0 <e<1 and choose m=m(e, R;, R,) such that

N 12 N 12 N

[T el < % far) +R2{z
0 5 1/2 e n—1 ) /2 e
{nz lc,| } <E and { YooY lagal } <E

n=m
=m n=m k=0

n—1

Z A, nMi
k=0

Then for N >m we have
N
{3 |nn|} <c+R,

L2
crr|

) .
g 0l X I 7}
e} { LT ]

I |2}
0
12 m—1 1/2
|nk|2} +e{z |nk|2} :
k=0

P

3

I M =

>
o

<8+8{

M= \TMz

<8+8{
k

[
3
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SO

N 1/2 m—1 1/2
(1_8){ Z |7/n|2} <£+8{ Z |’7k|2} .
n 0

—-m k=

As Y724 Ini|? is continuous on C there is a constant M >0 such that

m—1 1/2
{'S e <a

k=0

Hence

N 12 M1
{Z Innlz} < 8(17+) if N>m.
— &

=m

This implies that 3>, |7, |* converges uniformly in C. It follows from the
above with ¢,=¢*(z,), n,=¢,(z) or ¢,=¥*z,), n,=¥,(z) respectively
that also >, |¢,(z)|>< o0 and Y7, [¢,.(2)|* < oo for ze C, while both
series converge uniformly in C.

In particular 4_(z) is a disk for each ze D, U E,. |

We now may speak of an alternative:

either 4_(z) is a disk for every ze D, U E|,,
or 4.(z) is a point for every ze D, U E,.
Thus we may say that 4 (or K_) is a disk (circle) or 4, (or K ) is a
point without specifying any z € D, U E,,.
COROLLARY 6.3. In the case of a limiting disk, the radius of K (z) is a

continuous function of z in Dyu E.

Proof. Formula (6.4) and Theorem 6.2. |

THEOREM 6.4 (Analyticity). Let 4., be a point. Then

s(z)= lim R,(z, w)

n— oo

exists for ze Dy U Ey and we T and is independent of w. The function s is
analytic in Dy E, and

s(z)

1—|z?

% >0  (zeDyuE,). (6.17)
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Proof. For zeDyUE, let s(z) be the point A_(z). Then clearly
R,(z, w) > s(z) as n— oo, for each we T. Now take a fixed we T and put
s,(z)=R,(z, w). Then s, is analytic in D, U E,. From the equation of K,(z)
we obtain

1 2 s,(z)+s5,(2)
7+sn(z)KO :|‘p0*5n(2)¢0|2<2 2 5
Ko 1— |Z|
SO
| o
L D) 45, + Isa(2)? 2 < 2 D H 52
Ko 1—|z|

which implies

2 14 |z)?
s (2)| € 5 =737
Ko 11 =127
where the last member is uniformly bounded on compact subsets of
Dy U E,. Thus s(z) is analytic in D, U E,. Finally (6.17) follows from the
equation of 4 _(z). |

7. THE MOMENT PROBLEM

Let .4 be the set of all the solutions of the moment problem mentioned
in Section 1. Recall that a solution u is a non-decreasing real valued func-
tion on [ —x, 7] such that

j” R(t)du(0)=M(R) for ReZ+%, (1=e").

—7

In Section 5 we already observed that .# # (. Two solutions x, and u, are
considered to be equal if they determine the same continuous linear func-
tional on C(T), i.e., if

[ rwdn@=[" s dux0)  forall fec(n).

—7 —7

This means that x, and u, determine the same regular countably additive
measure on the o-field of the Borel sets in [ —z, ). This is just the case if
there is a constant C such that u,(0) —u,(0)= C at all § where u, —pu, is
continuous. (Consider the Fourier series for u, — u,.)
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If 4 e # then u has infinitely many points of increase. (The correspond-
ing Borel measure has infinite support.) Indeed, if x has only finitely many
points of increase, say 0,, 0,, .., 0, e[ —n, ), let t,= eifor j=1, .., n and
let N(z)=(z—1t,)(z—1t,)---(z—1t,) and consider

=2 g
7,(2)
Clearly
R, (z)=c C]:((ZZ)) €L,

with ¢ # 0. But then

0 < M(RR,)= j \R(1)]2 du(0) = 0.

A contradiction.
For u e .# we define

R = o) =,

THEOREM 7.1.  For fixed ze Dy u E, we have
{Fz):pued}=4,(z).

Proof. (a) Lets=F,(z) for some ue.#. Put

f(t)zl—z‘t for teT.
Then
t
=2 D(2),  teT
t—z
Let
Z VP
k=0

be the generalized Fourier series for f. Then

n=[ SO0, k=012,

—7
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SO

ro=ro [ S(0)du(0)=K05

—T7

and

t+z

T Z+Z T
=] T D=2 du(O)+ | T hulz) dul)
—al—z _zl—z
= —lpk(Z)+S¢k(Z), k:1923
Bessel’s inequality gives
> k<] [ o)
o Vi = . {—=2 72 .
From
t+z]? 1+|z|? S
— | =1 | |2(f(t)+f(t))
t—z 1—|z|
we get
T |t+z]|? o 1+ |z|? -1 o 2(s+5)
j_n — du(e)_—j_ndﬂ(0)+l_|z|2(s+s)_ R R R v

Notice that ¢,(z) =x,>0 and Y (z) = —1/k,. Thus we also have

1 21 1
Wo(z) —sdo(2)]?=|—+sKc0| == +s5+5+sIPkg=—+s+5+7,]"
Ko Ko Ko
Hence Bessel’s inequality becomes
& 1 —1 2(s+5)
_ 2_ < — ¢
T W) sl 5+ < ()T

SO

2(s+3)
1=z

S () — sl <

which means that se 4_(z).
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(b) Now let se 4_(z). Let us assume first that s is a boundery point
of A4 (z). Then for each n there is a point s, € K,(z) such that s, — s as
n— oo. For each n there is a point w, € T such that R, (z, w,)=s,. Let u,
be the solution of the truncated moment problem (in %, ), + %, 1))
with parameter w,. Then

itz
—al—z

$,=R,(z,w,) = A, (0).

By Helly’s selection theorem there is a subsequence () /2, of (u,),_, and
a non-decreasing function ¢ on [ —x, 7] such that ,un/(Q) — u(f) as j— oo
for all 8e[ —=, n]. By Helly’s convergence theorem

b4

[ &0 du, 0~ g0ydu) as j- o

-7 —7

for all continuous g on [ —x, n]. Clearly u € .#. Moreover

S, = du(0) as j— oo.

nj

J” 1+z
—al—z

du,(0)— [ T2

—al—z

Since s,, — s for n — oo, this implies that

J t-I-Z
s =
,n[—Z

so s=F,(z) for some pe . /.

Now assume that 4_(z) is a disk and that s belongs to the interior of
A, (z). Then s is a convex combination As,+(1—4)s,, (0<i<1) of
points s,, §, in the boundary of 4_(z). By the above there are u,, u, € .4
such that

T t4+z .
Sj:j dp;(0), Jj=12

_al—z

Clearly y=2Au, +(1—A)p,e M and s=F,(z).

COROLLARY 7.2. In the case of a limiting disk, for each seA_(z)
(zeDo U E,) there is a pe M such that s=F,(z). In this case the moment
problem has more than one solution.
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COROLLARY 7.3. In the case of a limiting point the moment problem has
a unique solution.

Proof. 1If pu,, u, € 4, then the functions F,, and F,, coincide on C\T.
For u=pu, —u, we have

Tt
[ T2 0)=0  for zeC\T,

_al—z

while u is of bounded variation on [ —7x, 7]. Considering the power series
of the function

F(Z)=r t+z

du(0)
_al—z

around 0 and around oo we see that

j” *du(0)=0  for keZ

—T

It follows by integration by parts that

0= j e du(0) = e u(0)" . — ik j e (0) do

:_ikj” M) d, kel

—T

This implies that all the Fourier coefficients of u, except possibly the zeroth
coefficient, are zero. Thus there is a constant C such that u(6) = C at all the
points where y is continuous. Hence y; =u,. |
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