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In Akhiezer's book [``The Classical Moment Problem and Some Related Ques-
tions in Analysis,'' Oliver 6 Boyd, Edinburgh�London, 1965] the uniqueness of the
solution of the Hamburger moment problem, if a solution exists, is related to a
theory of nested disks in the complex plane. The purpose of the present paper is to
develop a similar nested disk theory for a moment problem that arises in the study
of certain orthogonal rational functions. Let [:n]�

n=0 be a sequence in the open unit
disk in the complex plane, let

B0=1 and Bn(z)= `

n

k=0

:k

|:k |
:k&z

1&:kz
, n=1, 2, ...,

(:k�|:k |=&1 when :k=0), and let

L=span[Bn : n=0, 1, 2, ...].
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We consider the following ``moment'' problem:

Given a positive-definite Hermitian inner product ( } , } ) on L_L,
find a non-decreasing function + on [&?, ?] (or a positive Borel
measure + on [&?, ?)) such that

( f, g)=|
?

&?
f (ei% ) g(ei%) d+(%) for f, g # L.

In particular we give necessary and sufficient conditions for the uniqueness of the
solution in the case that

:

�

n=1

(1&|:n | )<�.

If this series diverges the solution is always unique. � 1997 Academic Press

1. INTRODUCTION

In [2] the uniqueness of the solution of the Hamburger moment
problem, if a solution exists, is related to a theory of nested disks in the
complex plane. The purpose of the present paper is to develop a similar
nested disk theory for a moment problem that arises in the study of certain
orthogonal rational functions.

Let

T=[z # C: |z|=1], D=[z # C: |z|<1], E=[z # C: |z|>1]

And let :n , n=0, 1, 2, ... be given points in D with :0=0. The Blaschke
factors `n are given by

`n(z)=
:n

|:n |
}

:n&z
1&:nz

, n=0, 1, 2, ...,

where by convention

:n

|:n |
=&1 when :n=0.

The (finite) Blaschke products are

Bn(z)= `
n

k=1

`k(z), n=1, 2, ..., and B0(z)=1.
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We define the linear spaces Ln , n=0, 1, 2, ... and L by

Ln=span[Bm : m=0, 1, ..., n] and L= .
�

n=0

Ln .

Clearly Ln consists of the functions that may be written as

pn(z)
?n(z)

,

where

?n(z)= `
n

k=1

(1&:nz), n=1, 2, ..., and ?0(z)=1

and pn belongs to >n , the set of polynomials of degree at most n. The sub-
star conjugate f

*
of a function f is defined as

f
*

(z)=f (1�z� ).

For f # Ln"Ln&1 the superstar conjugate f* will be

f*(z)=Bn(z) f
*

(z).

If f # L0 , then f*=f
*

.
The linear spaces Ln*

, n=0, 1, 2, ..., and L
*

are defined as

Ln*
=[ f

*
: f # Ln] and L

*
=[ f

*
: f # L].

Then we have

Ln*
=span { 1

Bm
: m=0, 1, ..., n==span { 1

|m
: m=0, 1, ..., n= ,

where

|m(z)= `
m

k=1

(z&:k), and |0(z)=1.

As in [3] we also put

Ln(:n)=[ f # Ln : f (:n)=0], n=1, 2, ...

and similarly

Ln*
(1�:� n)=[ f # Ln*

: f (1�:n)=0], n=1, 2, ... .
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Furthermore we assume that M is a linear functional on L+L
*

such
that for f # L we have

M( f
*

)=M( f ), and M( ff
*

)>0 if f{0.

Then this also holds for f # L+L
*

. The functional M induces an inner
product ( } , } ) on L_L by

( f, g) =M( fg
*

), f, g # L.

Note that LL
*

=L+L
*

, as can be seen by partial fraction decomposi-
tion. Also for f, g # L

*
we may define ( f, g) =M( fg

*
). Then we get

( f, g) =( g
*

, f
*

) for f, g # L.

As ( g, f )=M( gf
*

)=M( fg
*

)=( f, g) for f, g # L and ( f, f ) =
M( ff

*
)>0 for f # L, f{0, the inner product is Hermitian and positive-

definite on L_L.
In this paper we develop a nested disk theory in connection to the

following ``moment'' problem:

Given the inner product ( } , } ) on L_L (or the linear func-
tional M on L+L

*
), find a non-decreasing function + on

[&?, ?] (or a positive Borel measure + on [&?, ?)) such that

( f, g) =|
?

&?
f (ei% ) g(ei%) d+(%) for f, g # L

(or M( f )=|
?

&?
f (ei%) d+(%) for f # L+L

*
).

In particular we give necessary and sufficient conditions for the uniqueness
of the solution in the case that

:
�

n=1

(1&|:n | )<�.

If this series diverges the solution is always unique. This is a consequence
of the ``closure criterion'' discussed in Addendum A.2 of [1]. Two non-
decreasing functions which are solutions of the moment problem such that
their difference is a constant at all the points at which it is continuous are
considered to be the same solution of the moment problem.
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2. ORTHOGONAL RATIONAL FUNCTIONS

In our approach orthogonal rational functions will play an important
role. Let the sequence [,n]�

n=0 in L be obtained by orthonormalization of
the sequence [Bn]�

n=0 with respect to the inner product ( } , } ) on L_L,
i.e.,

,n # Ln and (,n , ,n)=1, n=0, 1, 2, ...

and

( f, ,n) =0 for f # Ln&1 , n=1, 2, ... .

Such orthogonal rational systems were also considered by Djrbashian [9].
It follows easily that

( f, ,n*) =0 for f # Ln(:n), n=1, 2, ...,

because Bn f
*

# Ln&1 for such f. Each ,n can be written as

,n(z)= :
n

k=0

b (n)
k Bk(z).

Here the non-zero number b (n)
n is called the leading coefficient of ,n . We

assume that the ,n are chosen such that b (n)
n >0 and we write }n=b (n)

n . It
is easily shown that

}n=,n*(:n)=,n*(:n).

Using the uniqueness of the reproducing kernel

:
n

k=0

,k(z) ,k(w)

for the inner product space Ln one can show, see for instance [3] or [9],
that the following Christoffel�Darboux formula holds

:
n&1

k=0

,k(z) ,k(w)=
,n*(z) ,n*(w)&,n(z) ,n(w)

1&`n(z) `n(w)
, (2.1)

and equivalently

:
n

k=0

,k(z) ,k(w)=
,n*(z) ,n*(w)&`n(z) `n(w) ,n(z) ,n(w)

1&`n(z) `n(w)
. (2.2)
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The ,n and ,n* satisfy the recurrence relations

,n(z)==n
z&:n&1

1&:nz
}n

}n&1

,n&1(z)+$n
1&:n&1z

1&:nz
}n

}n&1

,*n&1(z),

n=1, 2, ... (2.3)

and (superstar conjugation)

,n*(z)=&
:n

|:n |
$n

z&:n&1

1&:n z
}n

}n&1

,n&1(z)

&
:n

|:n |
=n

1&:n&1z
1&:nz

}n

}n&1

,*n&1 (z), n=1, 2, ... (2.4)

with ,0=,0*=}0 . Here

=n=&
:n

|:n |
1&:n&1:n

1&|:n&1 |2

,n*(:n&1)
}n

, (2.5)

$n=
1&:n&1:n

1&|:n&1 |2

,n(:n&1)
}n

. (2.6)

It follows from the Christoffel�Darboux formula (2.1) with z=w=:n&1

that =n{0. A proof of (2.3) and (2.4) can be found in [3] or in [4], but
(2.3) and (2.4) also may be derived from the superstar conjugates with
respect to w and with repect to z and w of the Christoffel�Darboux formula.
See also [9]. We mention another consequence of the Christoffel�Darboux
formula. Taking the superstar conjugate of (2.1) with respect to z and w and
writing

Bn"k=Bn �Bk , k=0, 1, ..., n; n=0, 1, ...

we obtain

,n*(z) ,n*(w)&,n(z) ,n(w)

1&`n(z) `n(w)
= :

n&1

k=0

B(n&1)"k (z) B(n&1)"k (w) ,k*(z) ,k*(w).

(2.7)

For z=w=:n&1 this gives

|,n*(:n&1)| 2&|,n(:n&1)| 2=|,*n&1(:n&1)| 2 [1&|`n(:n&1)| 2]

=}2
n&1

(1&|:n | 2)(1&|:n&1 | 2)
|1&:n:n&1 |2 .
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Together with (2.5) and (2.6) this leads to

|=n | 2&|$n | 2=
}2

n&1

}2
n

1&|:n | 2

1&|:n&1 |2 . (2.8)

In particular this implies that

|=n |>|$n |. (2.9)

A different proof of (2.8) can be found in [6].

3. ASSOCIATED FUNCTIONS

Next to the orthogonal functions ,n we consider the associated functions
�n defined by

�0(z)=&
1
}0

, (�0(z)=&M(,0)),

and

�n(z)=M(D(t, z)[,n(z)&,n(t)]), n=1, 2, ... .

Here M is acting on t and

D(t, z)=
t+z
t&z

.

Obviously �n # Ln for n=0, 1, 2, ... . It is shown in [8] that

�n(z)=M \D(t, z) _,n(z)&
f (t)
f (z)

,n(t)&+
for f # L(n&1)V , f�0, n=1, 2, ... . (3.1)

For the superstar conjugates of the �n we have

�0*(z)=&
1
}0

and

�n*(z)=M \D(t, z) _Bn(z)
Bn(t)

,n*(t)&,n*(z)&+ , n=1, 2, ... . (3.2)
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It is shown in [8] that we also have

�n*(z)=M \D(t, z) _ f (t)
f (z)

,n*(t)&,n*(z)&+
for f # Ln*

(1�:n ), f�0, n=1, 2, ... . (3.3)

The functions �n and �n* satisfy the recurrences

�n(z)==n
z&:n&1

1&:nz
}n

}n&1

�n&1(z)&$n
1&:n&1z

1&:nz
}n

}n&1

�*n&1 (z),

n=1, 2, ... (3.4)

and (superstar conjugation)

�n*(z)=
:n

|:n |
$n

z&:n&1

1&:nz
}n

}n&1

�n&1(z)

&
:n

|:n |
=n

1&:n&1z
1&:nz

}n

}n&1

�*n&1 (z), n=1, 2, ... . (3.5)

A proof of these recurrence formulas can be found in [3]. Another proof
is given in [8]. The pair (�n , &�n*) satisfies the same recurrence as the
pair (,n , ,n*). The initial values are (,0 , ,0*)=}0(1, 1) and (�0 , &�0*)=
(&1�}0)(1, &1).

4. ANALOGUES OF THE LIOUVILLE�OSTROGRADSKII FORMULA
(DETERMINANT FORMULA) AND GREEN'S FORMULA

In the previous section we have seen that the pairs (,n(z), ,n*(z)) and
(�n(z), &�n*(z)) satisfy the recurrence

}n&1

}n
Xn(z)==n An(z) Xn&1(z)+$nBn(z) X-

n&1 (z), n=1, 2, ...,

(4.1a)

}n&1

}n
X -

n(z)={n[$nAn(z) Xn&1(z)+=nBn(z) X -
n&1(z)], n=1, 2, ...,

(4.1b)

where

{n=&
:n

|:n |
, An(z)=

z&:n&1

1&:n z
, Bn(z)=

1&:n&1z
1&:nz

, n=1, 2, ... .
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Suppose that the pair (xn(z), x-
n(z)) satisfies (4.1) and suppose that the

pair ( yn(w), y-
n(w)) satisfies (4.1) with z replaced by w. Put

Gn(z, w)=x-
n(z) yn(w)&xn(z) y-

n(w), n=0, 1, 2, ... .

Then

}2
n&1

}2
n

Gn(z, w)={n[$nAn(z) xn&1(z)+=nBn(z) x-
n&1(z)]

} [=n An(w) yn&1(w)+$nBn(w) y-
n&1(w)]

&[=nAn(z) xn&1(z)+$nBn(z) x-
n&1(z)]

} {n[$n An(w) yn&1(w)+=nBn(w) y-
n&1(w)]

={n[|$n | 2&|=n | 2] An(z) Bn(w) xn&1(z) y-
n&1 (w)

+{n[|=n | 2&|$n | 2] An(w) Bn(z) x-
n&1(z) yn&1(w)

={n[ |=n | 2&|$n | 2][An(w) Bn(z) x-
n&1(z) yn&1(w)

&An(z) Bn(w) xn&1(z) y-
n&1(w)]

={n[|=n | 2&|$n | 2] An(w) Bn(z)

} _x-
n&1(z) yn&1(w)&xn&1(z) y-

n&1(w)

+{1&
An(z) Bn(w)
An(w) Bn(z)= xn&1(z) y-

n&1(w)& .

Here

1&
An(z) Bn(w)
An(w) Bn(z)

=
(1&|:n&1 | 2)(z&w)

(:n&1&w)(1&:n&1z)
=1&

`n&1(z)
`n&1(w)

.

With

cn&1

cn
={n[|=n | 2&|$n | 2] An(w) Bn(z), n=1, 2, ... and c0=1

we get

1
cn

= `
n

k=1

[|=k | 2&|$k | 2] } `
n

k=1 \&
ak

|:k |+
w&:k

1&:k w
} `

n

k=1

w&:k&1

w&:k

} `
n

k=1

1&:k&1z
1&:k z

.
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Using (2.8) this gives

cn=
}2

n

}2
0

1&:nz
1&|:n | 2

w&:n

w
1

Bn(w)
. (4.2)

Moreover

cn&1 {1&
An(z) Bn(w)
An(w) Bn(z)==&

}2
n&1

}2
0

z&w
wBn&1(w)

.

Hence

cn

}2
n

Gn(z, w)&
cn&1

}2
n&1

Gn&1(z, w)=&
1
}2

0

z&w
wBn&1(w)

xn&1(z) y-
n&1(w),

and summation gives (c0=1)

}2
0

}2
n

cnGn(z, w)&G0(z, w)=&
z&w

w
:
n

k=1

xk&1(z) y-
k&1(w)

Bk&1(w)
,

and by (4.2)

1&:nz
1&|:n | 2

w&:n

z&w
1

Bn(w)
Gn(z, w)&

w
z&w

G0(z, w)=& :
n&1

k=0

xk(z) y-
k(w)

Bk(w)
,

so

x-
n(z) yn(w)&xn(z) y-

n(w)
1&(`n(z)�`n(w))

&Bn(w)
x-

0(z) y0(w)&x0(z) y-
0(w)

1&(`0(z)�`0(w))

=& :
n&1

k=0

xk(z) Bn"k (w) y-
k(w).

For z=w we get the determinant formula

x-
n(z) yn(z)&xn(z) y-

n(z)=
1&|:n | 2

1&:nz
zBn(z)
z&:n

(x-
0(z) y0(z)&x0(z) y-

0(z)).

In particular for

xn(z)=,n(z), x-
n(z)=,n*(z), yn(z)=�n(z), y-

n(z)=&�n*(z)

we obtain the analogue of the Liouville�Ostrogradskii formula

,n*(z) �n(z)+,n(z) �n*(z)=
1&|:n | 2

1&:nz
&2zBn(z)

z&:n
(4.3)
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as a special case of the determinant formula. Of course formula (4.3) may
be derived more easily. The formula is also proved in [6].

The analogue of Green's formula is derived in a similar way. Put

Fn(z, w)=x-
n (z) y-

n(w)&xn(z) yn(w), n=0, 1, 2, ... .

This time we obtain from (4.1)

}2
n&1

}2
n

Fn(z, w)=[|=n | 2&|$n | 2] Bn(z) Bn(w)

} _Fn&1(z, w)+{1&
An(z) An(w)

Bn(z) Bn(w)= xn&1(z) yn&1(w)& ,

where now

1&
An(z) An(w)

Bn(z) Bn(w)
=

(1&|:n&1 | 2)(1&zw� )
(1&:n&1z)(1&:n&1w� )

=1&`n&1(z) `n&1(w).

If c0=1 and

cn&1

cn
=[|=n | 2&|$n | 2] Bn(z) Bn(w), n=1, 2, ...,

then

cn=
}2

n

}2
0

(1&:nz)(1&:nw� )
1&|:n | 2 =

}2
n

}2
0

1&zw�

1&`n(z) `n(w)

and

cn&1 {1&
An(z) An(w)

Bn(z) Bn(w)==
}2

n&1

}2
0

(1&zw� ).

Thus we obtain

cn

}2
n

Fn(z, w)&
cn&1

}2
n&1

Fn&1(z, w)=
1
}2

0

(1&zw� ) xn&1(z) yn&1(w)

which leads to

cn

}2
n

Fn(z, w)&
c0

}2
0

F0(z, w)=
1
}2

0

(1&zw� ) :
n&1

k=0

xk(z) yk(w),
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and using the expression for cn ,

1&zw�

1&`n(z) `n(w)
Fn(z, w)&F0(z, w)=(1&zw� ) :

n&1

k=0

xk(z) yk(w),

so

x-
n(z) y-

n(w)&xn(z) yn(w)

1&`n(z) `n(w)
&

x-
0(z) y-

0(w)&x0(z) y0(w)
1&zw�

= :
n&1

k=0

xk(z) yk(w),

(4.4)

the analogue of Green's formula. Notice that 1&`0(z) `0(w)=1&zw� .
We only mention the following special cases of Green's formula. For

xn(z)=,n(z), x-
n(z)=,n*(z), yn(w)=�n(w), y-

n(w)=&�n*(w)

we get

,n*(z) �n*(w)+,n(z) �n(w)

1&`n(z) `n(w)
+

2
1&zw�

=& :
n&1

k=0

,k(z) �k(w). (4.5)

For

xn(z)=�n(z), x-
n(z)=&�n*(z), yn(w)=�n(w), y-

n(w)=&�n*(w)

we get a ``Christoffel�Darboux'' formula for the associated functions

�n*(z) �n*(w)&�n(z) �n(w)

1&`n(z) `n(w)
= :

n&1

k=0

�k(z) �k(w), (4.6)

and if z=w

|�n*(z)| 2&|�n(z)| 2

1&|`n(z)| 2 = :
n&1

k=0

|�k(z)| 2. (4.7)

The superstar conjugate of (4.7) reads

|�n*(z)| 2&|�n(z)| 2

1&|`n(z)| 2 = :
n&1

k=0

|B(n&1)"k(z)| 2 |�k*(z)| 2. (4.8)

5. PARA-ORTHOGONAL FUNCTIONS AND
QUADRATURE FORMULAS

It follows easily from the Christoffel�Darboux formula (2.1) that the
zeros of ,n are in D and that the zeros of ,n* are in E. Moreover we have
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|,n(z)|<|,n*(z)| for z # D and |,n(z)|>|,n*(z)| for z # E. As we intend to
give quadrature formulas with nodes in T we consider the functions

Qn(z, w)=,n(z)+w,n*(z), n=0, 1, 2, ... (5.1)

with w # T arbitrary. Clearly the zeros z1 , ..., zn of Qn(z, w) are all in T and
it is easy to show that they are simple. See [3]. Of course the zeros zj

depend on n and w. Since

Qn(z, w)=Ln&1 & Ln(:n), n=1, 2, ...

and

(Qn(z, w), 1){0 and (Qn(z, w), Bn(z)) {0, n=1, 2, ...,

where the inner product acts on z, the sequence is called para-orthogonal.
As

Qn*(z, w)=w� Qn(z, w),

superstar conjugation with respect to z, the Qn are called w� -invariant.
Notice that the above orthogonality remains valid if for each n we take for
w a fixed wn in T. If

4n, i (z)=
1&:nz
1&:nzi

Qn(z, w)
(z&zi ) Q$n(zi , w)

, i=1, ..., n, (5.2)

where the prime means differentiation with respect to z, then 4n, i # Ln&1

and we have the quadrature formula (see [3])

M(R)= :
n

j=1

*n, jR(zj ) for R # L(n&1)*
+Ln&1 , (5.3)

with *n, j=M(4n, j)>0 for j=1, ..., n.
Let us assume now that zj=ei% j, j=1, 2, ..., n, with

&?�%1<%2< } } } <%n<?.

Then, using the functions +n given by

0 if &?�%�%1 ,

+n(%)={ :
k

j=1

*n, j if %k<%�%k+1, k=1, ..., n&1,

M(1) if %n<%�?
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(or using the measures +n=�n
j=1 *n, j$%j , where $% j is the translated Dirac

measure), one obtains from Helly's theorems (or from the weak* compact-
ness of the 1-ball in the dual space of the Banach space C(T)) that the
moment problem has a solution, say +. So there is a non-decreasing func-
tion (or a positive Borel measure) + such that

M(R)=|
?

&?
R(ei%) d+(%) for R # L

*
+L. (5.4)

It follows from the fact that the inner product is positive definite that the
solutions + must have infinitely many points of increase (or must be
measures with infinite support). The proof is given in Section 7.

Now let

F+(z)=|
?

&?

t+z
t&z

d+(%) (t=ei%) (5.5)

and

Rn(z, w)=|
?

&?

t+z
t&z

d+n(%)= :
n

j=1

*n, j
zj+z
zj&z

.

Then Rn(z, w) can be written as

Rn(z, w)=
Pn(z, w)
Qn(z, w)

with Pn(z, w) # Ln .

It is shown in [8] that

Pn(z, w)=�n(z)&w�n*(z), n=1, 2, ... . (5.6)

In [5] a formula like (5.6) was obtained only in the ``cyclic'' situation,
i.e., in the case of a finite number of points :n repeated in cyclic order.

From the partial fraction decomposition

Rn(z, w)= :
n

j=1

*n, j
zj+z
zj&z

it follows that

*n, k=&
1

2zk

Pn(zk , w)
Q$n (zk , w)

, k=1, ..., n. (5.7)

Using the determinant formula it can be shown that (see [8])

*n, j=
1

�n&1
k=0 |,k(zj )|2 , j=1, ..., n; n # N. (5.8)
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It is also shown in [8] that Rn(z, w) is a ``Pade� -type'' approximant to F+

in the following sense. There are functions h0 and h� , both analytic in
D _ E with limz � 0 h0(z)=0 and limz � � h�(z)=0 such that

F+(z)&Rn(z, w)=Bn&1(z) h0(z)

and

F+(z)&Rn(z, w)=
1

Bn&1(z)
h�(z).

Of course the functions h0 and h� depend on the parameter w. The error
is given by

F+(z)&Rn(z, w)=
1

f (z) Qn(z, w) |
?

&?
D(t, z) f (t) Qn(t, w) d+(%),

where f # L(n&1)*
& Ln*

(1�:n), f�0. See also [7].

6. NESTED DISKS

Let

D0=[z # D : z{:j , j=0, 1, 2, ...]

and E0=[z # E: z{1�:j , j=1, 2, ...].

For fixed z # D0 _ E0 the values of

s=Rn(z, w)=
�n(z)&w�n*(z)
,n(z)+w,n*(z)

describe a circle, say Kn(z), if w varies in T. Indeed, by the Christoffel�
Darboux formula (2.1) and formula (4.7) we have

0<
| |�n(z)|&|�n*(z)| |
|,n(z)|+|,n*(z)|

�|s|�
|�n(z)|+|�n*(z)|
| |,n(z)|&|,n*(z)| |

<�.

As w # T, the equation of Kn(z) is

|�n*(z)+s,n*(z)|=|�n(z)&s,n(z)|. (6.1)

Since the pairs (,n(z), ,n*(z)) and (�n(z), &�n*(z)) are (independent)
solutions of the recurrency (4.1) also the pair (�n(z)&s,n(z),
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&�n*(z)&s,n*(z)) is a solution of (4.1). Hence by the analogue of Green's
formula (4.4) we have for the given z

|�n*(z)+s,n*(z)| 2&|�n(z)&s,n(z)|2

1&|`n(z)| 2 &
|(1�}0)&s}0 | 2&|(1�}0)+s}0 | 2

1&|z| 2

= :
n&1

k=0

|�k(z)&s,k(z)| 2.

Since the first term on the left-hand side of this equation is zero, the equa-
tion of the circle Kn(z) is

:
n&1

k=0

|�k(z)&s,k(z)| 2=
2(s+s� )
1&|z| 2 . (6.2)

Clearly the circular disk 2n(z) corresponding to Kn(z) is given by

:
n&1

k=0

|�k(z)&s,k(z)| 2�
2(s+s� )
1&|z| 2 . (6.3)

It follows directly from (6.2) that

Kn(z)/[s # C: Rs>0] if z # D0

and

Kn(z)/[s # C: Rs<0] if z # E0 .

Indeed, if s # 2n(z) and Rs=0, then �0(z)&s,0(z)=0, so s=&1�}2
0 .

A contradiction. The centre and the radius of Kn(z) follow easily from (6.1).
We have

centre=&
�n*(z) ,n*(z)+�n(z) ,n(z)

|,n*(z)|2&|,n(z)| 2 ,

radius= }�n*(z) ,n(z)+,n*(z) �n(z)
|,n*(z)| 2&|,n(z)| 2 } .

Using (4.5) and (2.1) with z=w we get

centre=
2�(1&|z| 2)+�n&1

k=0 �k(z) ,k(z)
�n&1

k=0 |,k(z)| 2 .
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Using (4.3) and (2.1) with z=w we get

radius= } (1&|:n | 2)�(1&:nz) } (&2zBn(z))�(z&:n)
(1&|`n(z)| 2) } �n&1

k=0 |,k(z)| 2 }
=

2 |z|
|1&|z| 2 |

}
|Bn&1(z)|

�n&1
k=0 |,k(z)| 2 . (6.4)

Formula (6.3) implies that the 2n(z) are nested disks,

2n(z)#2n+1(z), n=1, 2, ... .

Moreover, by (6.2), the circles Kn(z) and Kn+1(z) touch if z is not a zero
of ,n or if both ,n(z) and �n(z) are zero.

The intersection of the disks 2n(z) is denoted as 2�(z). Clearly 2�(z) is
a circular disk (with a positive radius) or 2�(z) is a point. The limiting
circle, which may reduce to a point, is denoted as K�(z). The inequality for
2�(z) is

:
�

k=0

|�k(z)&s,k(z)| 2�
2(s+s� )
1&|z| 2 . (6.5)

As we have nested disks, (6.4) implies that the sequence

\ |Bn(z)|
�n

k=0 |,k(z)| 2+
�

n=0

is non-increasing (obvious for |z|<1), and 2�(z) is a point if and only if
this sequence tends to zero for n � �.

In the remaining part of this paper we assume that

:
�

k=1

(1&|:k | )<�. (6.6)

Then the Blaschke product

B(z)= `
�

k=1

:k

|:k |
:k&z

1&:kz

converges uniformly in every compact subset of C"[1�:j : j=1, 2, ...]. The
zeros of B are precisely :1 , :2 , :3 , ... . Notice that (6.6) implies that D0 and
E0 are open sets in C. Also we remark that for z # D0 _ E0 now 2�(z) is
a point if and only if

:
�

k=0

|,k(z)| 2=�.
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Proposition 6.1. Let z # D0 _ E0 be given. Then

(a) The recurrency (4.1) has at least one solution (Xn , X -
n ) for which

:
�

k=0

|Xk | 2<�, i.e., (Xk)�
k=0 # l 2.

(b) For every solution (Xn , X -
n ) of (4.1) the sequence (Xk )�

k=0 belongs
to l 2 if and only if 2�(z) is a circular disk with a positive radius.

Proof. (a) Take Xn=�n(z)&s,n(z) and X -
n=&�n*(z)&s,n*(z) with

s # 2�(z).

(b) If 2�(z) is not a single point, then ��
k=0 |,k(z)| 2<� since the

radius of 2�(z) is positive, and for s # 2�(z) also ��
k=0 |�k(z)&s,k(z)| 2

<�. This implies that also ��
k=0 |�k(z)| 2<�. The first statement of (b)

now follows from the fact that (,n(z), ,n*(z)) and (�n(z), &�n*(z)) form a
basis for the space of solutions of (4.1). Conversely, if (Xn)�

n=0 is in l 2 for
every solution (Xn , X -

n) of (4.1), then ��
k=0 |,k(z)| 2<�, and therefore

2�(z) is a disk with a positive radius. K

In the sequel following we say that 2�(z) is a ``disk'' if 2�(z) is not a
single point. Thus by a disk we mean a disk with a positive radius.
Similarly we say that K�(z) is a ``circle'' if K�(z) does not reduce to a
single point.

Theorem 6.2 (Invariance). Let ��
k=1 (1&|:k | )<� and let z0 # D0 _ E0

be such that 2�(z0) is a disk. Then 2�(z) is a disk for every z # D0 _ E0 and

:
�

k=0

|,k(z)| 2 and :
�

k=0

|�k(z)| 2

converge uniformly on every compact subset of D0 _ E0 .

For the proof of this theorem we need some consequences of the
analogues of Green's formula and of the determinant formula.

From the Christoffel�Darboux formula (2.1) and its superstar conjugate
(2.7) both with z=w, it follows that

:
n

k=0

|,k(z)| 2= :
n

k=0

|Bn"k(z)|2 |,k*(z)| 2

for each n. Similarly (4.7) and (4.8) imply that

:
n

k=0

|�k(z)| 2= :
n

k=0

|Bn"k(z)|2 |�k*(z)| 2
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for each n. As for z # D0 _ E0 we have

0<|B(z)|<|Bn(z)|�|Bn"k(z)|�1, k=0, 1, ..., n if z # D0

and

1�|Bn"k(z)|�|Bn(z)|<|B(z)|<�, k=0, 1, ..., n if z # E0 ,

we obtain

:
�

k=0

|,k(z)| 2<� � :
�

k=0

|,k*(z)| 2<� (6.7)

and

:
�

k=0

|�k(z)| 2<� � :
�

k=0

|�k*(z)| 2<� (6.8)

if z # D0 _ E0 .
Next we consider (2.1) in the form

,n*(z) ,n*(z0)&,n(z) ,n(z0)=[1&`n(z) `n(z0)] :
n&1

k=0

,k(z) ,k(z0), (6.9)

formula (4.6) in the form

�n*(z) �n*(z0)&�n(z) �n(z0)=[1&`n(z) `n(z0)] :
n&1

k=0

�k(z) �k(z0), (6.10)

and formula (4.5) in the forms

&,n*(z) �n*(z0)&,n(z) �n(z0)

=[1&`n(z) `n(z0)] { 2
1&zz0

+ :
n&1

k=0

,k(z) �k(z0)= (6.11)

and

&�n*(z) ,n*(z0)&�n(z) ,n(z0)

=[1&`n(z) `n(z0)] { 2
1&zz0

+ :
n&1

k=0

�k(z) ,k(z0)= . (6.12)

Elimination of ,n*(z) from (6.9) and (6.11) gives

&[,n(z0) �n*(z0)+�n(z0) ,n*(z0)] ,n(z)

=[1&`n(z) `n(z0)] { 2
1&zz0

,n*(z0)

+ :
n&1

k=0

[,k(z0) �n*(z0)+�k(z0) ,n*(z0)] ,k(z)= , (6.13)
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while elimination of �n*(z) from (6.10) and (6.12) leads to

&[,n(z0) �n*(z0)+�n(z0) ,n*(z0)] �n(z)

=[1&`n(z) `n(z0)] { 2
1&zz0

�n*(z0)

+ :
n&1

k=0

[,k(z0) �n*(z0)+�k(z0) ,n*(z0)] �k(z)= . (6.14)

Using the analogue of the Liouville�Ostrogradskii formula (4.3) and

1&`n(z) `n(z0)=
(1&|:n | 2)(1&zz0 )
(1&:n z0 )(1&:n z)

we get

1&`n(z) `n(z0)

,n(z0) �n*(z0)+�n(z0) ,n*(z0)
=

:n&z0

2z0Bn(z0)

1&zz0

1&:nz
.

Thus (6.13) and (6.14) become

&,n(z)=
:n&z0

z0 Bn(z0)

1
1&:nz

,n*(z0)

+
:n&z0

2z0Bn(z0)

1&zz0

1&:n z
:

n&1

k=0

[,k(z0) �n*(z0)+�k(z0) ,n*(z0)] ,k(z),

(6.15)

&�n(z)=
:n&z0

z0 Bn(z0)

1
1&:nz

�n*(z0)

+
:n&z0

2z0Bn(z0)

1&zz0

1&:n z
:

n&1

k=0

[,k(z0) �n*(z0)+�k(z0) ,n*(z0)] �k(z).

(6.16)

Proof of Theorem 6.2. In this proof we write

An(z)=&
:n&z0

z0Bn(z0)

1
1&:nz

and Bn(z)=&
:n&z0

2z0Bn(z0)

1&zz0

1&:nz

and

ak, n=,k(z0) �n*(z0)+�k(z0) ,n*(z0)
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for k=0, 1, ..., n&1 and n=0, 1, .... Then

:
�

n=0

:
n&1

k=0

|ak, n | 2�2 :
�

n=0

:
n&1

k=0

( |,k(z0)| 2 |�n*(z0)| 2+|�k(z0)| 2 |,n*(z0)| 2)

�2 \ :
�

n=0

|�n*(z0)| 2 } :
�

k=0

|,k(z0)| 2

+ :
�

n=0

|,n*(z0)|2 } :
�

k=0

|�k(z0)| 2+<�

by (6.7) and (6.8) as ��
k=0 |,k(z0)| 2<� and ��

k=0 |�k(z0)| 2<� since
2�(z0) is a disk. Let C be a compact subset of D0 _ E0 . Then An(z) and
Bn(z) are uniformly bounded for z # C. Say |An(z)|�R1 and |Bn(z)|�R2

for z # C and n=0, 1, 2, ... . Then (6.15) and (6.16) are of the form

'n=An cn+Bn :
n&1

k=0

ak, n 'k , n=0, 1, 2, ...,

(with 'n='n(z), An=An(z), Bn=Bn(z)), where

:
�

n=0

|cn | 2<� and :
�

n=0

:
n&1

k=0

|ak, n | 2<�.

As in Akhiezer's book [2] we show that ��
n=0 |'n | 2 converges uniformly

in C. Let z # C. Then clearly

{ :
N

n=m

|'n | 2=
1�2

�R1 { :
N

n=m

|cn | 2=
1�2

+R2 { :
N

n=m } :
n&1

k=0

ak, n'k }
2

=
1�2

.

Let 0<=<1 and choose m=m(=, R1 , R2) such that

{ :
�

n=m

|cn | 2=
1�2

<
=

R1

and { :
�

n=m

:
n&1

k=0

|ak, n | 2=
1�2

<
=

R2

.

Then for N�m we have

{ :
N

n=m

|'n | 2=
1�2

�=+R2 { :
N

n=m

:
n&1

k=0

|ak, n | 2 :
n&1

k=0

|'k | 2=
1�2

�=+R2 { :
N

k=0

|'k | 2=
1�2

{ :
�

n=m

:
n&1

k=0

|ak, n | 2=
1�2

�=+= { :
N

k=0

|'k | 2=
1�2

�=+= { :
N

k=m

|'k | 2=
1�2

+= { :
m&1

k=0

|'k | 2=
1�2

,
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so

(1&=) { :
N

n=m

|'n | 2=
1�2

�=+= { :
m&1

k=0

|'k | 2=
1�2

.

As �m&1
k=0 |'k | 2 is continuous on C there is a constant M>0 such that

{ :
m&1

k=0

|'k | 2=
1�2

�M.

Hence

{ :
N

n=m

|'n | 2=
1�2

�
=(M+1)

1&=
, if N�m.

This implies that ��
n=0 |'n | 2 converges uniformly in C. It follows from the

above with cn=,n*(z0), 'n=,n(z) or cn=�n*(z0), 'n=�n(z) respectively
that also ��

n=0 |,n(z)| 2<� and ��
n=0 |�n(z)| 2<� for z # C, while both

series converge uniformly in C.
In particular 2�(z) is a disk for each z # D0 _ E0 . K

We now may speak of an alternative:

either 2�(z) is a disk for every z # D0 _ E0 ,

or 2�(z) is a point for every z # D0 _ E0 .

Thus we may say that 2� (or K�) is a disk (circle) or 2� (or K�) is a
point without specifying any z # D0 _ E0 .

Corollary 6.3. In the case of a limiting disk, the radius of K�(z) is a
continuous function of z in D0 _ E0 .

Proof. Formula (6.4) and Theorem 6.2. K

Theorem 6.4 (Analyticity). Let 2� be a point. Then

s(z)= lim
n � �

Rn(z, w)

exists for z # D0 _ E0 and w # T and is independent of w. The function s is
analytic in D0 _ E0 and

R
s(z)

1&|z| 2>0 (z # D0 _ E0). (6.17)

365NESTED DISKS



File: 640J 305723 . By:DS . Date:23:05:97 . Time:09:37 LOP8M. V8.0. Page 01:01
Codes: 2307 Signs: 1222 . Length: 45 pic 0 pts, 190 mm

Proof. For z # D0 _ E0 let s(z) be the point 2�(z). Then clearly
Rn(z, w) � s(z) as n � �, for each w # T. Now take a fixed w # T and put
sn(z)=Rn(z, w). Then sn is analytic in D0 _ E0 . From the equation of Kn(z)
we obtain

} 1
}0

+sn(z)}0 }
2

=|�0&sn(z),0 | 2�2
sn(z)+sn(z)

1&|z| 2 ,

so

1
}2

0

+sn(z)+sn(z)+|sn(z)| 2 }2
0�2

sn(z)+sn(z)
1&|z| 2

which implies

|sn(z)|�
2
}2

0

1+|z| 2

|1&|z| 2 |
,

where the last member is uniformly bounded on compact subsets of
D0 _ E0 . Thus s(z) is analytic in D0 _ E0 . Finally (6.17) follows from the
equation of 2�(z). K

7. THE MOMENT PROBLEM

Let M be the set of all the solutions of the moment problem mentioned
in Section 1. Recall that a solution + is a non-decreasing real valued func-
tion on [&?, ?] such that

|
?

&?
R(t) d+(%)=M(R) for R # L+L

*
(t=ei%).

In Section 5 we already observed that M{<. Two solutions +1 and +2 are
considered to be equal if they determine the same continuous linear func-
tional on C(T ), i.e., if

|
?

&?
f (t) d+1(%)=|

?

&?
f (t) d+2(%) for all f # C(T ).

This means that +1 and +2 determine the same regular countably additive
measure on the _-field of the Borel sets in [&?, ?). This is just the case if
there is a constant C such that +1(%)&+2(%)=C at all % where +1&+2 is
continuous. (Consider the Fourier series for +1&+2 .)
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If + # M then + has infinitely many points of increase. (The correspond-
ing Borel measure has infinite support.) Indeed, if + has only finitely many
points of increase, say %1 , %2 , ..., %n # [&?, ?), let tj=ei% j for j=1, ..., n and
let N(z)=(z&t1)(z&t2) } } } (z&tn) and consider

R(z)=
N(z)
?n(z)

# Ln .

Clearly

R
*

(z)=c
N(z)
|n(z)

# Ln*

with c{0. But then

0<M(RR
*

)=|
?

&?
|R(t)| 2 d+(%)=0.

A contradiction.
For + # M we define

F+(z)=|
?

&?

t+z
t&z

d+(%) (t=ei%).

Theorem 7.1. For fixed z # D0 _ E0 we have

[F+(z): + # M]=2�(z).

Proof. (a) Let s=F+(z) for some + # M. Put

f (t)=
1+z� t
1&z� t

for t # T.

Then

f (t)=
t+z
t&z

=D(t, z), t # T.

Let

:
�

k=0

#k,k

be the generalized Fourier series for f. Then

#k=|
?

&?
f (t) ,k(t) d+(%), k=0, 1, 2, ...,
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so

#0=}0 |
?

&?
f (t) d+(%)=}0s�

and

#k=|
?

&?

t+z
t&z

(,k(t)&,k(z)) d+(%)+|
?

&?

t+z
t&z

,k(z) d+(%)

=&�k(z)+s,k(z), k=1, 2, ... .

Bessel's inequality gives

:
�

k=0

|#k | 2�|
?

&? }
t+z
t&z }

2

d+(%).

From

} t+z
t&z }

2

=&1+
1+|z| 2

1&|z| 2 ( f (t)+f (t))

we get

|
?

&? }
t+z
t&z }

2

d+(%)=&|
?

&?
d+(%)+

1+|z| 2

1&|z| 2 (s+s� )=
&1
}2

0

&(s+s� )+
2(s+s� )
1&|z| 2 .

Notice that ,0(z)=}0>0 and �0(z)=&1�}0 . Thus we also have

|�0(z)&s,0(z)|2= } 1
}0

+s}0 }
2

=
1
}2

0

+s+s� +|s| 2 }2
0=

1
}2

0

+s+s� +|#0 | 2.

Hence Bessel's inequality becomes

:
�

k=0

|�k(z)&s,k(z)| 2&
1
}2

0

&(s+s� )�
&1
}2

0

&(s+s� )+
2(s+s� )
1&|z| 2 ,

so

:
�

k=0

|�k(z)&s,k(z)| 2�
2(s+s� )
1&|z| 2 ,

which means that s # 2�(z).
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(b) Now let s # 2�(z). Let us assume first that s is a boundery point
of 2�(z). Then for each n there is a point sn # Kn(z) such that sn � s as
n � �. For each n there is a point wn # T such that Rn(z, wn)=sn . Let +n

be the solution of the truncated moment problem (in L(n&1)*
+L(n&1))

with parameter wn . Then

sn=Rn(z, wn)=|
?

&?

t+z
t&z

d+n(%).

By Helly's selection theorem there is a subsequence (+n j )
�
j=1 of (+n)�

n=1 and
a non-decreasing function + on [&?, ?] such that +n j (%) � +(%) as j � �
for all % # [&?, ?]. By Helly's convergence theorem

|
?

&?
g(%) d+nj (%) � |

?

&?
g(%) d+(%) as j � �

for all continuous g on [&?, ?]. Clearly + # M. Moreover

snj=|
?

&?

t+z
t&z

d+n j (%) � |
?

&?

t+z
t&z

d+(%) as j � �.

Since sn � s for n � �, this implies that

s=|
?

&?

t+z
t&z

d+(%),

so s=F+(z) for some + # M.

Now assume that 2�(z) is a disk and that s belongs to the interior of
2�(z). Then s is a convex combination *s1+(1&*) s2 , (0<*<1) of
points s1 , s2 in the boundary of 2�(z). By the above there are +1 , +2 # M

such that

sj=|
?

&?

t+z
t&z

d+j (%), j=1, 2.

Clearly +=*+1+(1&*)+2 # M and s=F+(z).

Corollary 7.2. In the case of a limiting disk, for each s # 2�(z)
(z # D0 _ E0) there is a + # M such that s=F+(z). In this case the moment
problem has more than one solution.
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Corollary 7.3. In the case of a limiting point the moment problem has
a unique solution.

Proof. If +1 , +2 # M, then the functions F+1
and F+ 2

coincide on C"T.
For +=+1&+2 we have

|
?

&?

t+z
t&z

d+(%)=0 for z # C"T,

while + is of bounded variation on [&?, ?]. Considering the power series
of the function

F(z)=|
?

&?

t+z
t&z

d+(%)

around 0 and around � we see that

|
?

&?
tk d+(%)=0 for k # Z.

It follows by integration by parts that

0=|
?

&?
eik% d+(%)=eik%+(%)| ?

&?&ik |
?

&?
eik%+(%) d%

=&ik |
?

&?
eik%+(%) d%, k # Z.

This implies that all the Fourier coefficients of +, except possibly the zeroth
coefficient, are zero. Thus there is a constant C such that +(%)=C at all the
points where + is continuous. Hence +1=+2 . K
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